5-4 Videos Guide

5-4a

- Units
- US Customary system
- Distance is in feet (ft) $(1 \mathrm{ft}=12 \mathrm{in})$
- Force is in pounds (lb)
- Work is in ft-lb
- SI (metric) system
- Distance is in meters (m) ($1 \mathrm{~m}=100 \mathrm{~cm}$)
- Force is in Newtons (N) ($\left.1 \mathrm{~N}=1 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
- Work is in Joules (J)
- Work $=$ force \times distance
- Hooke's Law
- The force required to maintain a spring stretched (or compressed) x units beyond its natural length is proportional to $x: f(x)=k x$

Exercise:

- A spring has a natural length of 40 cm . If a $60-\mathrm{N}$ force is required to keep the spring compressed 10 cm , how much work is done during this compression? How much work is required to compress the spring to a length of 25 cm ?

Exercises:

5-4b

- If 6 J of work is needed to stretch a spring from 10 cm to 12 cm and another 10 J is needed to stretch it from 12 cm to 14 cm , what is the natural length of the spring?

5-4c

- A chain lying on the ground is 10 m long and its mass is 80 kg . How much work is required to raise one end of the chain to a height of 6 m ?
- Work required to stretch/compress a spring or lift a heavy chain/cable/rope
- $W=\int_{a}^{b} k x d x$

In this expression, the force is variable ($k x$), and the distance is an incremental distance ($d x$)

Exercises:

5-4d

- A thick cable, 60 ft long and weighing 180 lb , hangs from a winch on a crane. Compute in two different ways the work done if the winch winds up 25 ft of the cable.

5-4e

- A circular swimming pool has a diameter of 24 ft , the sides are 5 ft high, and the depth of the water is 4 ft . How much work is required to pump all of the water out over the side? (Use the fact that water weighs $62.5 \mathrm{lb} / \mathrm{ft}^{3}$.)
- Work required to pump fluid out of a container
- $W=\int_{a}^{b} h(x) \delta A(x) d x$

In this expression, δ is the density of the fluid, $A(x)$ is the surface area of the fluid, and $h(x)$ is the distance (or height) a layer of the fluid must be raised to exit the container

